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Abstract

This paper aims to develop a numerical approach on the basis of necessary and sufficient con-

ditions for the existence of a solution for convex partially separable optimization problems.

Specially, applications of splitting methods to spline approximation problems are discussed.

Numerical examples are presented.
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1 Introduction

After introducing the so-called Fenchel-Lagrange dual problem by Boţ and Wanka

([11]), a lot of interesting theoretical results have been published (see for instance

[3] and [12]). On the other hand, it is necessary to investigate which advantages has

the new dual problem from a practical point of view. In association with this reason
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we aim to show numerical advantages for some optimization problems. For instance,

after deriving the Fenchel-Lagrange dual problem for convex partially separable op-

timization problems, strong duality assertions and optimality conditions have been

investigated (see [1]). 1990s were shown by Schmidt et al. (cf. [4], [9] and [10]) that

the construction of shape preserving spline approximation problems can be reduced

into the study of convex partially separable optimization problems. Although, by

using the Lagrange duality they can efficiently solvable by the Newton method, there

are still few works devoted to the development of new numerical algorithms. Some

analysis related to using the Newton method have been investigated (see [5] and [6]).

Since the objective function for the Fenchel-Lagrange dual problem is nondiffer-

entiable in general, differentiable optimization methods can not be applied to solve

this problem. But, by reducing necessary and sufficient conditions for existence a so-

lution into the generalized equations, it can usable the so-called splitting algorithms

for finding zero of the sum of maximal monotone operators (cf. [2]). For different

classes of splitting algorithms and their convergence we refer to [7].

The aim of this paper deals with the development a numerical approach on the

basis of necessary and sufficient conditions for the existence of a solution for convex

partially separable optimization problems.

This paper is organized as follows. In Section 2 we recall some results dealing with

the Fenchel-Lagrange duality for convex partially separable optimization problems.

In particular, the assertion how to reduce optimality conditions into the generalized

equations is stated. The next section is devoted to suggest a numerical algorithm in

order to construct convex interpolation with C1 splines. Moreover, some numerical

examples are presented.
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2 The Fenchel-Lagrange dual problem for convex partially separable

optimization problems

Assume that Fi : Rli → R, i = 1, n, are convex functions and Wi ⊆ Rli , i = 1, n,

are closed, convex sets. Let Ai ∈ Rli×(n+1), li ∈ {1, ..., n + 1} be given matrices. We

consider the following optimization problem

(P cps) inf
u∈W

n∑

i=1

Fi(Aiu),

where

W =
{

u = (u0, ..., un)T ∈ Rn+1
∣∣∣ Aiu ∈ Wi, i = 1, n

}
.

Introducing the auxiliary variables vi = Aiu ∈ Rli , i = 1, n, (P cps) can be

rewritten as

(P cps) inf
v∈V

n∑

i=1

Fi(vi),

where

V =
{

v ∈ Rk
∣∣∣ vi −Aiu = 0, vi ∈ Wi, i = 1, n

}
,

with v = (u, v1, ..., vn) ∈ Rk and k = n + 1 + l1 + ... + ln.

In [1], for a more general case of (P cps) and its particular cases different dual

problems and the optimality conditions have been derived. For instance, the Fenchel-

Lagrange dual problem to (P cps) becomes

(Dcps
FL) sup

qi,pi∈Rli ,i=1,n
n∑

i=1
AT

i qi=0

{
−

n∑

i=1

F ∗
i (pi) +

n∑

i=1

inf
vi∈Wi

(pi + qi)T vi

}
.

The functions F ∗
i are the conjugates of Fi defined by

F ∗
i (pi) = sup

xi∈Rli

[pT
i xi − Fi(xi)], i = 1, n.

The Fenchel-Lagrange dual problem has been investigated as a "combination" of the

classical Lagrange and Fenchel dual problems in convex optimization (see [11]).
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In association with the optimality conditions, the following assertion has been

verified.

Proposition 1. ([2]) Assume that ∃u′ ∈ Rn+1 such that Aiu
′ ∈ ri(Wi), i = 1, n.

Then ū ∈ W is an optimal solution to (P cps) if and only if ∀i ∈ {1, ..., n}, v̄i =

Aiū ∈ Rli is a solution to the following generalized variational inequality problem:

∃p̄i ∈ ∂Fi(v̄i) such that

(GV Ii
cps) (p̄i + q̄i)T (vi − v̄i) ≥ 0, ∀vi ∈ Wi,

where
n∑

i=1
AT

i q̄i = 0.

Where ri(C) is the relative interior of a given set C ⊆ Rn and ∂h denotes the

subdifferential of a given function h : Rn → R.

∀i ∈ {1, ..., n}, (GV Ii
cps) leads to the inclusion problems of finding v̄i ∈ Rli such

that

(IP i
cps) 0 ∈ q̄i + NWi(v̄i) + ∂Fi(v̄i), (1)

where q̄i ∈ Rli fulfills
n∑

i=1
AT

i q̄i = 0 and NC is the normal cone operator defined by

NC(x) =




{z ∈ Rn| zT (y − x) ≤ 0, ∀y ∈ C}, if x ∈ C;

∅, otherwise.

The convex partially separable optimization problems were intensively investi-

gated by Schmidt et al. ([9] and [10]) related to the construction shape preserving

spline approximation problems. In order to construct a convex spline interpolant, it

is appropriate to select such spline which has minimal curvature. This requirement

leads to the following problem

(P ts) inf
(ui−1,ui)∈Wi⊆R2s

i=1,n

n∑

i=1

Fi(ui−1, ui),
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which is called the tridiagonally separable optimization problem. For the problem

(P ts) and for its particular cases dealing with the spline approximation problems,

the Lagrange duals are unconstrained. If the solutions to the Lagrange duals are

known, then the primal problems can be solved by the so-called return-formula (see

[4], [9] and [10]). On the other hand, the reformulation of the optimality conditions

for the Fenchel-Lagrange dual problem to (P ts) becomes the inclusion problem ([2]).

The Fenchel-Lagrange dual problem to (P ts) turns out to be (see [1])

(Dts
FL) sup

(pi1,pi2)∈R2s

qi∈Rs,i=0,n

{
−

n∑

i=1

F ∗
i (pi1, pi2)

+
n∑

i=1

inf
(ui−1,ui)∈Wi

[(pi1 − qi−1)T ui−1 + (pi2 + qi)T ui]
}

with q0 = 0, qn = 0.

By Proposition 4.2 in [1], one can show that a point ū = (ū0, ..., ūn)T ∈ Rs × · · · × Rs
︸ ︷︷ ︸

n+1

is an optimal solution to (P ts) if and only if (see (1))

0 ∈ (−q̄i−1, q̄i) + NWi(ūi−1, ūi) + ∂Fi(ūi−1, ūi), i = 1, n, (2)

where (p̄, q̄), p̄ = (p̄1, ..., p̄n) ∈ R2s × · · · × R2s
︸ ︷︷ ︸

n

, q̄ = (q̄0, q̄1, ..., q̄n)

∈ Rs × · · · × Rs
︸ ︷︷ ︸

n+1

is an optimal solution to (Dts
FL) and it holds

p̄i = (p̄i1, p̄i2) ∈ ∂F (ūi−1, ūi), i = 1, n. (3)

3 Computational results for convex interpolation with C1 splines

Let (xi, yi)T ∈ R2, i = 0, n, be a given data points defined on the grid

∆n : x0 < x1 < ... < xn.
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A cubic spline s on ∆n can be given on [xi−1, xi] by

s(x) = yi−1 + mi−1(x− xi−1)

+ (3τi − 2mi−1 −mi)
(x− xi−1)2

hi
+ (mi−1 + mi − 2τi)

(x− xi−1)3

h2
i

with hi = xi − xi−1, τi = yi−yi−1

hi
, i = 1, n.

It holds s ∈ C1[x0, xn] and s(xi) = yi, s′(xi) = mi, i = 0, n. The points (x0, y0), ..., (xn, yn)

associated to ∆n are said to be in convex position if

τ1 ≤ τ2 ≤ · · · ≤ τn. (4)

If (4) is fulfilled, then the convexity of s leads to the problem of finding

(x, y)T ∈ Wi = {(x, y)T ∈ R2| 2x + y ≤ 3τi ≤ x + 2y}, i = 1, n. (5)

In order to select only one convex interpolant will be minimized the mean curva-

ture of s. It is easily verified that

min
(mi−1,mi)

T∈Wi

i=1,n

xn∫

x0

s′′(x)2dx

= min
(mi−1,mi)

T∈Wi

i=1,n

( n∑

i=1

4
h2

i

{m2
i + mimi−1 + m2

i−1 − 3τi(mi + mi−1) + 3τ2
i }

)
,

where the feasible set is given by (5). In other words, we obtain the tridiagonally

problem with s = 1 and the functions are given by

Fi(x, y) =
4
h2

i

{x2 + xy + y2 − 3τi(x + y) + 3τ2
i }, i = 1, n

and the sets by (5). The conjugate functions are easily calculated as

F ∗
i (ξ, η) = sup

x,y∈R
{xT ξ + yT η − Fi(x, y)}

= τi(ξ + η) +
hi

12
(ξ2 + η2 − ξη), i = 1, n. (6)

Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com



Mongolian Mathematical Journal 8

Whence for convex interpolation with cubic C1 splines, the functions F ∗
i , i = 1, n,

and the sets Wi, i = 1, n, in (Dts
FL) are defined by (6) and (5), respectively. Moreover,

as

∇Fi(x, y) =
4
h2

i

(2x + y − 3τi, x + 2y − 3τi)T , i = 1, n,

in this case (2) becomes

0 ∈ (−qi−1, qi)T +
4
h2

i

(2ui−1 + ui − 3τi, ui−1 + 2ui − 3τi)T

+ NWi(ui−1, ui), i = 1, n, (7)

where q = (q0, q1, ..., qn−1, qn)T ∈ Rn+1 with q0 = qn = 0 and u = (u0, ..., un)T ∈
Rn+1.

In order to establish an algorithm for constructing convex interpolation with

cubic C1 splines, let us rewrite (7) as follows:

0 ∈ Ai(qi−1, qi, ui−1, ui, τi) + Bi(ui−1, ui), i = 1, ..., n, (8)

where τi are given and qi, ui are unknown variables and

Ai(qi−1, qi, ui−1, ui, τi) : =
( 4

h2
i

(2ui−1 + ui − 3τi)− qi−1,
4
h2

i

(ui−1 + 2ui − 3τi) + qi

)T
,

Bi(ui−1, ui) : = NWi(ui−1, ui).

Algorithm ConvSpline

Input : q0, q1
0, q2

0 ∈ R, z0 = (z1
0 , z

2
0)

T ∈ R2,

Output : A solution of the problem (8): (u0, ..., un)T ∈ Rn+1.

Begin

Step 1. Choose i := 1, q0 := 0, q1
0, q

2
0 ∈ [−L,+L], q1

0 6= q2
0, L > 0 and

ε > 0.
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(i) Setting q̂0 := (q0, q1
0)

T , q̃0 := (q0, q2
0)

T , for i compute forward step

s1
i := (I − λAi(q̂0, z0, τi))

s2
i := (I − λAi(q̃0, z0, τi)).

(ii) Solve backward step by projection method that is a quadratic programming

problem.

z1
i := PWi(s

1
i ) ∈ R2

z2
i := PWi(s

2
i ) ∈ R2.

(iii) Stop criteria: if ‖ z1
i − z2

i ‖< ε, then z2
i :≈ (ui−1, ui)T .

Step 2. Update q0 :

q̄0 : = q̂0 − αq̃0, α > 0, q̄0 ∈ [−L,+L],

z1
i : = z2

i ,

q̃0 : = q̄0.

Goto Step 1(i)

Step 3.

i : = i + 1,

q0 : = −q2
0,

z0 : = z2
i−1.

Goto Step 1(i)

End.
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Remark. The problem (8) is actually a system of inclusion problems depending on

qi. In order to choose parameters qi−1, qi, we apply a descent direction to Algorithm

ConvSpline. Depending on the choice parameters in (8), can be considered some

alternative versions of the Algorithm ConvSpline.

Example 1. ([8], Fiorot and Tabka)

We interpolate ten points of the graph of a given function

f(x) =
−9x + 2
4x + 5

,

which is decreasing and convex on the interval [−1, 8]. We use a uniform subdi-

vision hi = 1 for i = 1, ..., 8 and values of the function at points xi = i, i =

−1, 0, 1, 2, 3, 4, 5, 6, 7, 8. The graph of the function can be compared to the results

computed by Algorithm ConvSpline and by Matlab cubic spline tools. Numerical

results were tested by using Matlab tools on a Toshiba L305D 2.0GHz processor with

3.0 GB RAM.

Table 1.
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n/h Matlab fmincon Algorithm Iteration Time(Sec) Relative error

tools ConvSpline

-13.1461 -10.6000 2 0.0277 0.1937

-5.5077 -1.1778 3 0.0271 0.7862

-0.1563 -0.4530 2 0.0232 1.8983

-0.1563 -0.2398 1 0.0319 0.5342

n=9,h=1 -0.1563 -0.1485 4 0.0401 0.0499

-0.1273 -0.1010 3 0.0181 0.2066

-0.0828 -0.0731 2 0.0228 0.1171

-0.0637 -0.0554 2 0.0269 0.1303

-0.0479 -0.0434 2 0.0265 0.0939

−1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8

10

12

f(x) function graph

Algorithm ConvSpline
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−1 0 1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

Algorithm ConvSpline

Matlab  fmincon  tool

The next table is devoted to the results comparing the Algorithm ConvSpline to the

Algorithm in [13].

Table 2.
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n/h Algorithm Algorithm Iteration Time(Sec) Relative

in [13] ConvSpline error

-15.3111 -10.6000 4 0.0277 0.3077

-5.8889 -1.1778 3 0.0271 0.8000

-0.8154 -0.4530 2 0.0232 0.4444

-0.3464 -0.2398 5 0.0319 0.3077

n=9,h=1 -0.1941 -0.1485 2 0.0401 0.2349

-0.1247 -0.1010 3 0.0181 0.1901

-0.0870 -0.0731 2 0.0228 0.1598

-0.0642 -0.0554 1 0.0269 0.1371

-0.0465 -0.0434 2 0.0265 0.0667

−1 0 1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

Algorithm in [13]

Algorithm ConvSpline

Example 2. Now we consider the following function which is increasing and

convex on the interval (4, 7).

f(t) = 2 sinx + x.

Table 3.
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n/h Matlab fmincon Algorithm Iteration Time(Sec) Relative error

tools ConSpline

-0.6510 -0.5364 5 0.0801 0.1760

-0.6510 -0.4953 2 0.0630 0.2392

-0.3973 -0.5958 4 0.0254 0.4996

-1.6399 -1.3820 6 0.0249 0.1573

n=7,h=1 -1.6399 -2.8475 3 0.0238 0.7364

-1.6399 -2.8728 3 0.0266 0.7518

-1.6399 -2.1854 2 0.0228 0.3326

2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

f(x) function graph

Algorithm ConvSpline
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